

Journal of Alloys and Compounds 408-412 (2006) 1355-1358

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Magnetic properties of Nd–Fe–B nanocomposite films prepared by a new method using pulsed laser deposition

H. Fukunaga^{a,*}, M. Nakano^a, Y. Matsuura^a, H. Takehara^a, F. Yamashita^b

^a Nagasaki University, Nagasaki 852-8521, Japan ^b Matsushita Electric Industrial Co., Ltd., 7-1-1 Morofuku, Daito, Osaka 574-0044, Japan

Available online 20 June 2005

Abstract

Nanocomposite film-magnets with the thickness of several tens of microns were prepared by the pulsed laser deposition method with a rotating $Nd_{2.6}Fe_{14}B/Fe_3B$ composite target. As-deposited films were composed mainly of amorphous Nd–Fe–B and Fe–B phases and exhibited soft magnetic properties. Annealing crystallized the films into the composite state composed of $Nd_2Fe_{14}B$ and α - Fe/Fe_2B . Superior hard magnetic properties were developed, when the calculated thickness of the period of Nd–Fe–B layers is approximately 90 nm. Films annealed in situ by the Joule-heating were prevented from surface oxidation and their magnetic properties were improved compared with those of films annealed with an infrared furnace. The obtained coercivity, remanence and $(BH)_{max}$ were 323 kA/m, 1.05 T and 85.7 kJ/m³, respectively. The above remanence and $(BH)_{max}$ values are higher than the corresponding values reported for the film-magnets prepared from a single $Nd_{2.6}Fe_{14}B$ target. Considering the strong spring-back phenomenon and the existence of soft phases in our films, a large remanence value and resultantly, a large (BH)_{max} value of our films can be attributed to the remanence enhancement based on the effective intergrain interaction. © 2005 Elsevier B.V. All rights reserved.

Keywords: Pulsed laser deposition; Nanocomposite magnet; Magnetic film; Nd-Fe-B; Multi-layers; Remanence enhancement

1. Introduction

Nanocomposite magnets are hopeful candidates for highperformance magnets in the next generation and are expected to exhibit superior magnetic properties by controlling their nanostructures [1,2]. One of the promising methods of controlling nanostructures is synthesis of an artificial layered structure, because the layered structure is expected to prevent the growth of grains and to achieve a fine nanostructure [3,4]. Therefore, superior magnetic properties would be obtained, when the thickness of a layer is comparable with the suitable grain size of a film-magnet. On the other hand, we need to prepare 10^3 to 10^4 layers in order to synthesize film-magnets applicable to electronic devices, such as a millimeter-sizemotor. The pulsed laser deposition (PLD) with a composite target is suitable to prepare the layered structure for this purpose. In this contribution, we report magnetic properties of $Nd_2Fe_{14}B$ -based nanocomposite film-magnets prepared by the PLD method using a composite target.

2. Experimental

Composite targets (Nd_{2.6}Fe₁₄B/Fe₃B) shown in Fig. 1 were prepared and were ablated by a YAG laser beam ($\lambda = 355$ nm) in a vacuum chamber. The ablated materials were deposited on a Ta substrate for 1 h, and we obtained composite films with the thickness of several tens of microns. During the deposition, a target was rotated with the speed of 3–13 rpm, suggesting that 360–1440 layers are prepared in 1 h. The repetition frequency of the laser was set to 30 Hz. The thickness of a layer was controlled by varying the laser power (3.8–4.2 W) and the distance between a target and a substrate (7–10 mm).

As as-deposited films exhibited soft magnetic properties, they were annealed in vacuum (approximately 10^{-5} Torr) with an infrared furnace or a Joule-heating system. Precipitated phases by annealing were studied by the X-ray

^{*} Corresponding author. Tel.: +81 95 819 2552; fax: +81 95 819 2552. *E-mail address:* fukunaga@net.nagasaki-u.ac.jp (H. Fukunaga).

^{0925-8388/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2005.04.159

Fig. 1. Photograph of a composite target used in this study. The target consists of $Nd_{2.6}Fe_{14}B$ and Fe_3B parts.

diffractometory and the thermomagnetic analysis. In-plane magnetic properties of the films were measured with a vibrating sample magnetometer after magnetization under a pulse field of 6.4 MA/m.

3. Results and discussion

As mentioned in Section 2, as-deposited films exhibited soft magnetic properties. Thermomagnetic properties of an as-deposited film are shown in Fig. 2. As seen in the figure, the as-deposited film is magnetically in multi-phase state, and the phase with the lowest Curie temperature seems to be amorphous Nd–Fe–B, considering its Curie temperature. The increase in magnetization starting at approximately 450 °C would correspond to the crystallization of the amorphous Fe–B phase, which has the Curie temperature higher than 450 °C. It should be noted that the amorphous Fe₇₅B₂₅

Fig. 2. Temperature dependence of magnetization of an as-deposited film. The Curie temperatures of $Nd_2Fe_{14}B$, Fe_3B and Fe_2B are shown by broken lines as a reference.

Fig. 3. X-ray diffraction pattern of a crystallized film by annealing with an infrared furnace.

alloy was reported to be crystallized at 450 °C or a lower temperature and to have the Curie temperature higher than the crystallization temperature [5,6]. Therefore, as-deposited films are expected to be mainly composed of amorphous Nd–Fe–B and Fe–B phases, which is consistent with soft magnetic properties of the as-deposited films.

Crystallization of as-deposited films due to an annealing at 700 °C with an infrared furnace developed hard magnetic properties. As seen in Fig. 3, precipitation of Nd₂Fe₁₄B contributes to this hardening, although the diffraction peaks from Nd₂O₃, α -Fe and unidentified phases are also observed.

The obtained $(BH)_{max}$ values are shown in Fig. 4 as a function of the calculated thickness of the period of Nd–Fe–B/Fe–B layers, T_p . The thickness of the period T_p was determined by dividing the thickness of a prepared film by the total rotation numbers of the target. As seen in the figure, the largest $(BH)_{max}$ value was obtained, when T_p was approximately 90 nm, which corresponds to the rotational speed of 5–7 rpm in our experimental condition. Assuming that the thicknesses of Nd–Fe–B and Fe–B layers are propor-

Fig. 4. (BH)_{max} of films annealed with an infrared furnace as a function of thickness of period of Nd–Fe–B/Fe–B layers. The inset indicates the change of temperature during annealing schematically.

Fig. 5. $(BH)_{max}$ of films annealed in situ in the vacuum chamber by Jouleheating as a function of current density. The films were heated by passing current through a Ta substrate and a film, and the current density was determined by dividing the current value by the total cross-sectional area of the substrate and the film.

tional roughly to the areas of Nd_{2.6}Fe₁₄B and Fe₃B targets, the thickness of a magnetically soft Fe–B layer is calculated to be about 20 nm for $T_p = 90$ nm. This value is consistent with the result of the micromagnetic calculation [2].

The large (110) diffraction peak from α -Fe observed in Fig. 2 can be partially attributed to surface oxidation of the annealed film, because we can also observe the strong peaks from Nd₂O₃. In order to suppress the surface oxidation, we annealed as-deposited films in situ in the vacuum chamber by passing current through a Ta substrate and a film. For this experiment, T_p was controlled between 50 and 90 nm by using the rotational speed of 7 rpm. Fig. 5 shows the obtained (BH)max as a function of the current density. The current density was determined by dividing the current value by the total cross-sectional area of the substrate and the film. As seen in the figure, hard magnetic properties were developed abruptly, when the current density exceeded a critical value. The temperature of a sample was not determined because of the short durations of the annealing. The largest value obtained was improved by 25 kJ/m^3 compared with that obtained with an infrared furnace.

Fig. 6 shows the hysteresis loop for the film annealed for 0.75 min under the current density of 38 MA/m^2 . The remanence M_r , coercivity H_c and (BH)_{max} are 1.05 T, 323 kA/m and 85.7 kJ/m^3 , respectively. The obtained M_r and (BH)_{max} values are larger than the corresponding values for isotropic Nd–Fe–B film-magnets prepared from a single Nd_{2.6}Fe₁₄B target by the PLD method [7].

The X-ray diffraction pattern of a film annealed in situ is shown in Fig. 7. The observed pattern agreed qualitatively with that shown in Fig. 3 for the film annealed with an infrared furnace. However, it is clearly seen that the intensity of the

Fig. 6. Hysteresis loop for the film annealed in situ by Joule-heating. The current density and the duration are 38 MA/m^3 and 0.75 min, respectively.

(1 1 0) diffraction peak from α -Fe is decreased significantly, compared with that annealed with an infrared furnace. On the other hand, some unknown peaks are seen around 30°, which may indicate that the Joule-heated sample includes minor phases excluded in the samples crystallized with an infrared furnace. Thus, in addition to the suppression of the surface oxidation, difference in minor phases and a nanostructure may affect the observed improvement in magnetic properties.

Thermomagnetic properties of the above-mentioned films are shown in Fig. 8. The decrease in magnetization around 300 °C corresponds to the Curie temperature of Nd₂Fe₁₄B. Beyond 300 °C, the magnetization is constant, and then, increases again at approximately 580 °C. The increase in magnetization at 580 °C would correspond to the crystallization of the residual amorphous phase. Finally, the magnetization vanishes at 760 °C, which corresponds to the Curie temperature of α -Fe. As mentioned previously, the as-deposited films are mainly composed of amorphous Nd–Fe–B and Fe–B phases. Crystallization of the amorphous Fe–B phase is expected to precipitate α -Fe, Fe₃B, Fe₂B, Fe₃B₂₆ and/or FeB, whose Curie temperature is 760, 510 [1], 742 [8], 425 [1] and 309–325 °C [9], respectively. Considering the thermomag-

Fig. 7. X-ray diffraction pattern of the film annealed in situ by Joule-heating. The current density and the duration are 38 MA/m^3 and 0.75 min, respectively.

Fig. 8. Temperature dependence of magnetization of a film annealed by Joule-heating.

Fig. 9. Spring-back ratio $M_{\rm sb}/M_{\rm r}$ as a function of remanence. The inset defines the spring-back ratio $M_{\rm sb}/M_{\rm r}$. The broken line indicates the result for a Nd–Fe–B film-magnet prepared from a single Nd_{2.6}Fe₁₄B target by the PLD method.

netic properties shown in Fig. 8, the precipitated phases are α -Fe and/or Fe₂B rather than Fe₃B. This result is consistent with the X-ray diffraction pattern shown in Fig. 7.

Fig. 9 shows the spring-back ratio, $M_{\rm sb}/M_{\rm r}$, which is defined in the inset as a function of remanence. In the figure, the broken line indicates $M_{\rm sb}/M_{\rm r}$ of a Nd–Fe–B film-magnet prepared from a Nd_{2.6}Fe₁₄B target by the PLD method [7]. It is seen that an increase in remanence has a tendency of increasing $M_{\rm sb}/M_{\rm r}$. In addition, $M_{\rm sb}/M_{\rm r}$ of our films are larger than that prepared from a single target. These results suggest that the existence of soft magnetic phases makes our filmmagnets so-called "exchange-coupled spring-magnets", and that it contributes to the remanence enhancement observed for our film-magnets.

4. Conclusions

Nanocomposite film-magnets with the thickness of several tens of microns were prepared by the pulsed laser deposition method with a rotating $Nd_{2.6}Fe_{14}B/Fe_{3}B$ composite target, and their magnetic properties were studied. Main results are summarized as follows:

- (1) As-deposited films were composed mainly of amorphous Nd–Fe–B and Fe–B phases and exhibited soft magnetic properties.
- (2) Annealing crystallized the films into the composite state composed of Nd₂Fe₁₄B and α -Fe/Fe₂B. Superior hard magnetic properties were developed, when the calculated thickness of the period of Nd–Fe–B/Fe–B layers is approximately 90 nm. The obtained coercivity, remanence and (BH)_{max} were 1.05 T, 323 kA/m and 85.7 kJ/m³, respectively. The above remanence and (BH)_{max} values are higher than the corresponding values reported for the film-magnets prepared from a single Nd_{2.6}Fe₁₄B target.
- (3) Considering the strong spring-back phenomenon and the existence of soft magnetic phases in our films, a large remanence value and resultantly, a large (BH)_{max} value of our films can be attributed to the remanence enhancement based on the intergrain interaction.

Acknowledgements

This work was supported in part by the Ministry of Education, Science, Sports and Culture of Japan under Grant-in-Aid (Nos. 15656084, 16686022 and 16080214) and the Special Coordinated Funds for Promoting Science and Technology on "Nanohetero Metallic Materials".

References

- [1] E.F. Kneller, R. Hawig, IEEE Trans. Magn. 27 (1991) 3588.
- [2] H. Fukunaga, J. Kuma, Y. Kanai, IEEE Trans. Magn. 35 (1999) 3235.
- [3] S.M. Parhofer, J.W. Wecker, C.K. Kuhrt, G. Gieres, L. Schultz, IEEE Trans. Magn. 32 (1996) 4437.
- [4] M. Shindo, M. Ishizone, A. Sakuma, H. Kato, T. Miyazaki, J. Appl. Phys. 81 (1997) 4444.
- [5] F.E. Luborsky, J.J. Becker, J.L. Walter, H.H. Lieberman, IEEE Trans. Magn. MAG-15 (1979) 1147.
- [6] K. Narita, H. Fukunaga, J. Yamasaki, K. Hara, J. Magn. Magn. Mater. 19 (1980) 145.
- [7] M. Nakano, R. Katoh, H. Fukunaga, S. Tutumi, F. Yamashita, J. Magn. Magn. Mater. 272–276 (2004) e1909.
- [8] O. Beckman, L. Lundgren, in: K.H.J. Buschow (Ed.), Ferromagnetic Materials, vol. 6, Amsterdam, North-Holland, 1991, p. 216.
- [9] O. Beckman, L. Lundgren, in: K.H.J. Buschow (Ed.), Ferromagnetic Materials, vol. 6, Amsterdam, North-Holland, 1991, p. 187.